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A numerical procedure is suggested for the solution of multidimensional
inhomogeneous Helmholtz/Schrödinger equations. The procedure is based
on coordinate-space (grid) representations in which all the coupling terms
(V̂) between different degrees of freedom are local (diagonal) and therefore
the remaining differential (nonlocal) terms are separable. This separability
leads to an efficient (sparse) representation of an approximate Green’s opera-
tor (Ĝ0 ). For sufficiently ‘‘weak’’ coupling, a low order expansion in powers
of Ĝ0 V̂ provides the solution according to Rayleigh Schrödinger perturbation
theory. For ‘‘strong’’ coupling intensities the sparse structure of Ĝ0 makes it
an efficient preconditioner for high order iterative solutions (e.g., the QMR
algorithm of Freund and Nachtigal). The high order power expansion in Ĝ0 V̂
provides an optimized perturbative series which converges for strong coupling
intensities. A numerical example is given for the Helmholtz equation in three
dimensions. Q 1997 Academic Press

I. INTRODUCTION

The solution of inhomogeneous wave equations of the type

Âx 5 f , (1.1)

where Â is a second-order, regular partial (multidimensional) differential operator
is common in numerical simulations of physical and chemical systems [1, 2]. In
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some cases the inhomogeneous term is intrinsic to the equation (e.g., in the Poisson
equation for the electrostatic potential). In other cases, the inhomogeneous term
is introduced in order to impose specific boundary conditions (a current source [3])
on the solution of homogeneous wave equations, such as Laplace, Helmholtz, or
Schrödinger equations (see, for example, Refs. [4–14] for applications). In general,
the solution to the inhomogeneous equation (1.1) is the Green’s function for the
corresponding homogeneous equation when f is chosen as a delta function in the
coordinate representation [2].

Unfortunately, already in three dimensions (corresponding, e.g., to a Cartesian
coordinate space) the discrete representation of the differential operator Â may
become too large to allow its storage in full dimensionality, and direct inversion
methods for solving Eq. (1.1) become impractical. The solution in these cases is
limited to iterative schemes.

The simplest iterative approach to wave equations is Rayleigh Schrödinger pertur-
bation theory [15, 16], which is based on splitting Â into a zero-order approximation
Â0 and a perturbation V̂ so that

Â 5 Â0 2 V̂. (1.2)

The formal solution to Eq. (1.1) is

x 5 Ĝf , (1.3)

where Ĝ is the inverse (Green’s) operator

Ĝ 5 Â21. (1.4)

An approximate solution can be obtained by the truncated perturbative expansion
(the Born series),

Ĝ 5 Ĝ0 1 Ĝ0 V̂Ĝ0 1 Ĝ0 V̂Ĝ0 V̂Ĝ0 , 1 ? ? ? , (1.5)

in which the zero-order Green’s operator is defined as

Ĝ0 5 Â21
0 . (1.6)

This approach is useful as long as Â0 is sufficiently close to Â, or alternatively,
when V̂ is a sufficiently ‘‘small’’ perturbation [15, 16]. In such cases, a low order
expansion converges to the correct solution. However, the perturbative series di-
verges for ‘‘large’’ V̂ which is a severe limitation in many applications of practical
interest (see, for example, the numerical example below).

An alternative to perturbation theory is to solve Eq. (1.1) by high-order iterative
(Krylov subspace based) methods [17–22]. The approximation after k iterations
reads

xk 5 Ok
j50

aj,k Â j f, (1.7)
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where haj,k j are optimized expansion coefficients which minimize the residual vector
x 2 x k. Important progress has been made recently in the development of these
approaches for the general case of non-Hermitian linear systems. (In particular, we
refer to the quasi minimal residual (QMR) algorithm of Freund and Nachtigal [23,
24]). However, a successful implementation of the method usually requires an
efficient preconditioner [19] which minimizes the number of iterations.

Below we present an optimized high-order iterative solution of Helmholtz/
Schrödinger equations, based on an approximate Green’s operator Ĝ0 as an efficient
preconditioner. The equation is represented in a discrete coordinate (grid) space
[25–28] in which the coupling V̂ is diagonal (local) and therefore the nondiagonal
(nonlocal) term, Â0 , is separable in the different degrees of freedom. This structure
leads to a sparse representation of Ĝ0 which is similar to that of the Fourier grid
preconditioner as described in Ref. [8], but which applies also when the separable
term contains mixed local and differential operators. The combination of a sparse
Ĝ0 and a diagonal V̂ provides an efficient high-order iterative expansion (using the
QMR algorithm) in powers of Ĝ0 V̂ which converges in cases where the perturbative
expansion diverges.

In Section II the simple relation between the perturbative series expansion and
iterative Krylov subspace-based methods is given for clarity. The sparse precondi-
tioner is introduced in Section III and an illustrative numerical application to the
solution of the Helmholtz equation in three dimensions is given in Section IV.
Conclusions are given in Section V.

II. AN OPTIMIZED HIGH-ORDER PERTURBATION THEORY

An alternative approach to the perturbative series expansion is to apply the
approximate Green’s operator Ĝ0 as a preconditioner to Eq. (1.1) and to solve the
equation by standard Krylov subspace-based iterative methods [17–22]. The general
approach is to replace Eq. (1.1) by

Ĝ0 Âx 5 Ĝ0 f. (2.1)

Using Eq. (1.2) one obtains

(Î 2 Ĝ0V̂)x 5 Ĝ0 f. (2.2)

For sufficiently small Ĝ0 V̂ (more precisely, when the spectrum of Ĝ0 V̂ in a discrete
representation is within the unit circle [17, 18]) the perturbative expansion (Eq.
(1.5)) is the formal solution to Eq. (2.2),

x 5
1

Î 2 Ĝ0 V̂
Ĝ0 f 5 Oy

j50
(Ĝ0 V̂) jĜ0 f. (2.3)
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However, Eq. (2.2) can be solved even for ‘‘large’’ Ĝ0 V̂ by construction of
a converging set of approximate solutions in the span of the Krylov subspace
K [(Î 2 Ĝ0 V̂), Ĝ0 f ], where the kth approximation is given by

xk 5 Ok
j50

aj,k (Î 2 Ĝ0 V̂) jĜ0 f 5 Ok
j50

bj,k (Ĝ0 V̂) jĜ0 f . (2.4)

The number of iterations required for convergence is minimized when Ĝ0 is a good
approximation to Â21, i.e. when V̂ is small. However, unlike in the perturbative
expansion, convergence will be obtained even for ‘‘large’’ V̂ since the expansion
coefficients hbj,k j (which are set to unity in the Born expansion) are optimized and
adjusted in order to minimize the residual vector (xk 2 x). Nevertheless, the
resulting scheme is a high-order procedure, requiring large numbers of Ĝ0 V̂ opera-
tions which may make the scheme impractical. In exact arithmetics the Krylov
subspace approximation is guaranteed to converge only when the number of itera-
tions approaches the size of the matrix representation of Â, which may become
very large (e.g., 105–106 in the example given below). An efficient preconditioner
Ĝ0 is therefore of major importance.

III. THE SPARSE SEPARABLE PRECONDITIONER

As described above, the main numerical effort in the high-order iterative scheme
is associate with the successive operations of Ĝ0 V̂. We therefore search for an
efficient representation in which Ĝ0 V̂ is ‘‘economical.’’ Our strategy is based on
choosing a discrete representation of the Helmholtz/Schrödinger equation in which
the coupling between different degrees of freedom is diagonal. A discrete coordinate
(grid) representation is a natural choice for that matter since the physical coupling
terms are often local (e.g., the interaction potential in quantum mechanics, or the
refractive index distribution in optics are diagonal in a Cartesian coordinate system
representation). The nonlocal (differential) operators are nondiagonal in the coordi-
nate representation [25–28]. However, since the coupling terms are diagonal the
nondiagonal terms are separable in the different degrees of freedom. The resulting
generic structure of Â for n coupled degrees in this representation takes the form

Â 5 On
l51

Âl 2 V̂, (3.1)

where V̂ is a diagonal n-dimensional coupling operator,

V̂ ; n d, (3.2)

and each operator Âl (l 5 1, ..., n) is unity with respect to all but the lth degree of
freedom. The matrix representation of Âl is defined as

Âl ; Al , (3.3)
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where

Al 5 I1 ^ I2 ^ ? ? ? ^ Il21 ^ Al ^ Il11 ^ ? ? ? ^ In . (3.4)

Il is an Nl 3 Nl identity matrix and Al is an Nl 3 Nl nondiagonal matrix representation
of an operator in the subspace of the lth degree of freedom. Equation (1.1) can be
rewritten in matrix form,

SOn
l51

Al 2 ndD x 5 f, (3.5)

where x and f are N 5 Pn
l51 Nl -dimensional vectors. As one can see, a matrix

vector multiplication of on
l51 Al 2 n d requires N 3 (1 1 on

l51 Nl ) scalar multiplica-
tions, which is much smaller than the matrix dimension N 2. Therefore, Eq. (3.5)
is a very sparse linear system.

The preconditioner for Eq. (3.5) is chosen as the inverse of the separable opera-
tor Â0 ,

G0 5 A 21
0 5 SON

l51
AlD21

, (3.6)

and the preconditioned system reads

(I 2 G0n d )x 5 G0f. (3.7)

While Â0 is a separable approximation to Â, its inverse Ĝ0 is clearly not separable,
and therefore the matrix G0 is dense and impractical for the iterative scheme. However,
the separability of Â0 can be used in order to represent G0 as a sequence of sparse
matrix multiplications as

G0 5 UR (ld )21UL , (3.8)

where ld is the diagonal eigenvalues matrix of A0 ,

A0 UR 5 URld, (3.9)

UL 5 U 21
R . (3.10)

(Note that, in general (for non-Hermitian A0 ), the existence of Eq. (3.8) is not
guaranteed. We shall therefore limit the discussion only to cases in which Eq. (3.8)
is valid.) The first operation UL onto a vector is a transformation to the basis in
which A0 is diagonal. Since A0 is separable, this transformation can be carried out
in successive steps,

UL 5 UL1
UL2

UL3
? ? ? ULn

, (3.11)
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where each step involves a sparse matrix multiplication

ULl
5 I1 ^ I2 ^ ? ? ? ^ Il21 ^ Ul ^ Il11 ^ ? ? ? ^ In . (3.12)

and the (small) matrices hUl j are the diagonalization matrices in the subspaces of
the different degrees of freedom, i.e.,

Ul Al U 21
l 5 Ld

l . (3.13)

The second operation is the diagonal inversion (ld )21. Note that while ld is separable
in the different degrees of freedom,

ld 5 On
l51

I1 ^ I2 ^ ? ? ? ^ Il21 ^ Ld
l ^ Il11 ^ ? ? ? ^ In ; (3.14)

its inverse is a diagonal coupling matrix. The third operation is the back transforma-
tion into the original matrix representation,

UR 5 UR1
UR2

UR3
? ? ? URn

, (3.15)

which, again, involves only sparse matrix multiplications,

URl
5 U 21

Ll
5 I1 ^ I2 ^ ? ? ? ^ Il21 ^ U 21

l ^ Il11 ^ ? ? ? ^ In . (3.16)

According to Eqs. (3.11), (3.12), the number of scalar multiplications in applying
UL is N 3 on

l51 Nl and similarly for UR . Neglecting the (order N ) diagonal operation
(ld )21, we find that applying G0 requires only twice the number of scalar multiplica-
tions in comparison to applying A0 . Thus we were able to make use of the separabil-
ity of Â0 in order to apply its nonseparable inverse Ĝ0 using only sparse representa-
tions.

IV. NUMERICAL EXAMPLE

As a model problem we consider the light distribution near a defect in a rectangu-
lar waveguide, as obtained from the solution of the Helmholtz equation in three
dimensions when polarization effects are neglected. (This problem is analogous to
the scattering of quantum particles of an obstacle within a two-dimensional rectangu-
lar tube, as described by the solution of the Schrödinger equation.) The stationary
Helmholtz equation [3, 14, 29] takes the form of Eq. (1.1), where the three-dimen-
sional differential operator reads

Âx,y,z ; =2
x 1 =2

y 1 =2
z 1 k2n2(x, y, z) 1 i «(x, y, z). (4.1)

k 5 2f/1.5 is the free space wave vector, n(x, y, z) is the index of refraction
distribution, and the imaginary term i «(x, y, z) is introduced in order to impose
the proper scattering boundary conditions on the wave function [4, 5, 14]. The
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FIG. 1. A discontinuous rectangular waveguide.

geometry of the rectangular waveguide with lateral metal coating is plotted in Fig.
1. The corresponding index of refraction distribution is given by

n2(x, y, z) 5 n2
P (x, y, z) 1 n2

D (x, y, z), (4.2)

where nP and nD correspond to the ‘‘perfect’’ and ‘‘defected’’ areas, respectively,

n2
P(x, y, z) 5 5n2

Px(x) 1 n2
Py(y), uzu .

Lz

2
,

0 uzu #
Lz

2
;

(4.3)

n2
D(x, y, z) 5 5n2

Dx(x) 1 n2
Dy(y), uzu #

Lz

2
,

0 uzu .
Lz

2
.

The lateral waveguide profiles are modeled as

nPx (x) 5 5
nP0

Ï2
uxu , Lx /2,

nP1

Ï2
uxu $ Lx /2;

nPy (y) 5 5
nP0

Ï2
uyu $ Ly /2,

nP1

Ï2
uyu $ Lx /2;

(4.4)

nDx (x) 5 5
nD0

Ï2
uxu , Lx /2,

nD1

Ï2
uxu $ Lx /2;

nDy (y) 5 5
nD0

Ï2
uyu $ Ly /2,

nD1

Ï2
uyu $ Lx /2;
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nP0 5 1.5 and nP1 5 i1000 are the internal (glass) and external (metal coating)
refraction indexes of the perfect waveguide (absorption of the coating is neglected).
The defect is characterized by the internal and external indexes nD0 and nD1 . The
imaginary function i «(x, y, z) vanishes, except at the boundaries of the numerical
grid, and it is given by

«(x, y, z) 5 «1x(x) 1 «2x(x) 1 «1y(y) 1 «2y(y) 1 «1z(z) 1 «2z(z), (4.5)

where, for example,

«1z(z) 5 5hz S z 2 z0

Z/2 2 z0
D4

, z $ z0 ,

0 , z , z0 , (4.6)

«2z(z) 5 «1z(2z),

and similarly for «6y (y) and «6x(x).
The incoming radiation flux (in the positive direction of the z axis) was chosen

as the fundamental lateral mode of the rectangular waveguide, characterized by
the propagation constant b 5 5.1540 em21,

w(x, y, z) 5 ! 2
Lx

sin Sf(x 1 Lx /2)
Lx

D! 2
Ly

sin Sf(y 1 Ly /2)
Ly

D! 1
2b

eibz. (4.7)

These incoming wave boundary conditions are imposed implicitly within the inho-
mogeneous (right-hand side) term,

f ; i«2z(z)w(x, y, z). (4.8)

Substitution of Eqs. (4.1)–(4.8) into Eq. (1.1) defines the inhomogeneous scalar
wave equation for the light distribution. The different propagation directions
(x, y, z) are coupled via the index of refraction distribution n2(x, y, z). A diagonal
matrix representation is chosen for this operator; i.e., n2(x, y, z) and «(x, y, z) are
sampled on a three-dimensional discrete grid, n2(xi , yj , zk ) and «(xi , yj , zk ), where

xi 5 2
X
2

1 (i 2 1)X/(Nx 2 1), i 5 1, 2, ..., Nx ,

yj 5 2
Y
2

1 ( j 2 1)Y/(Ny 2 1), j 5 1, 2, ..., Ny , (4.9)

zk 5 2
Z
2

1 (k 2 1)Z/(Nz 2 1), k 5 1, 2, ..., Nz ,
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and (i, j, k) corresponds to a point in an Nx 3 Ny 3 Nz-dimensional discrete space.
The second derivative operators are nondiagonal. The discrete variable representa-
tion of these operator is given by [28]

h=2
x ](i, j,k),(i9, j 9,k9) 5 dj, j9dk,k9 5

2f 2 N 2
x

3X 2 , i 5 i 9,

22N 2
x(21)i2i 9

(i 2 i 9)X 2 , i ? i 9,

(4.10)

and similarly for =2
y and =2

z .
As a preconditioner we chose a separable approximation to the matrix representa-

tion of Âx,y,z which represents the perfect (defect-free) waveguide. I.e.,

A0 5 Ax 1 Ay 1 Az , (4.11)

where

Ax 5 [=2
x 1 k2n2

Px (x) 1 i(«1x (x) 1 «2x (x))] ^ INy
^ INz

,

Ay 5 INx
^ [=2

y 1 k2n2
Py (y) 1 i(«1y (y) 1 «2y (y))] ^ INz

, (4.12)

Az 5 INx
^ INy

^ [=2
x 1 i(«1z(z) 1 «2z(z))].

FIG. 2. A contour plot of the light intensity in the (x, z) plane (at y 5 0.0 em) near the waveguide
discontinuity. The computational parameters are (see Eqs. (4.3), (4.4), (4.6), (4.9) for definitions) Lx 5

1.5, Ly 5 1.0, and Lz 5 0.8; 405,000 grid points were used to represent the wave function (Nx 5 45,
Ny 5 45, Nz 5 200), X 5 4.0, Y 5 3.0, Z 5 10.0, hx 5 hy 5 hz 5 200, x0 5 1.0, y0 5 0.7, z0 5 2.5
(all length units are in em). The results are converged with respect to the grid density. The wavefunction
is damped near the grid boundaries due to the imaginary boundary operators.
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FIG. 3. A log–log plot of the numerical error versus the numerical effort in calculating the wavefunc-
tion in the defect area. The error is defined as the norm of the residual vector, uf 2 Ax u, and the
numerical effort is measured in units of G0 n d operations: (a) perturbation theory (Eq. (2.3)); (b) optimized
perturbation expansion (Eq. (2.4)). The results are given for increasing perturbation intensities in the
defect area, nP0 2 nD0 5 0.05, 0.15, 0.25, 0.5. The computational parameters are Lx 5 1.5, Ly 5 1.0,
Lz 5 2.0, Nx 5 30, Ny 5 30, Nz 5 100, X 5 4.0, Y 5 3.0, Z 5 10.0, hx 5 hy 5 0, hz 5 200, x0 5 1.0,
y0 5 0.7, z0 5 2.5 (all length units are in em).

The nonseparable (coupling) term is, therefore,

n d 5 A0 2 A. (4.13)

nd is the diagonal matrix which represents the difference in the refractive index
distribution between the perfect and the defected waveguides. The light distribution
(x) was obtained by solving Eq. (3.7) using the optimized perturbation expansion
as described above with G0 5 A 21

0 . The quasi minimal residual (QMR) algorithm
(for details see Refs. [23, 24]) was used in order to optimize the expansion coeffi-
cients.

A two-dimensional cut through the three-dimensional wavefunction around the
defect area is plotted in Fig. 2. The defect represents a discontinuity of the wave
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guide along the z axis (see Fig. 1) in which the light propagates in vacuum, i.e.
nD0 5 nD1 5 1. This discontinuity is shown to reflect some of the incoming radiation
flux on expense of the transmission efficiency. Moreover, the longitudinal propaga-
tion is shown to be strongly coupled to the lateral dimensions, resulting in radiation
leak outside the waveguide. (The latter phenomena is pronounced since the lateral
dimensions Lx 5 1.5 em and Ly 5 1.0 em are of the order of the radiation wavelength
l 5 1.5 em.)

To illustrate the advantage of the optimal perturbation expansion with respect
to the standard perturbation theory, we need to address a simpler case for which
both approaches are comparable. We consider a waveguide with a discontinuous
internal refraction index, but with a perfect coating, so that nD1 5 nP1 . The perturba-
tion induced by the defect increases as the internal refraction index changes from
nD0 5 1.5 (perfect waveguide) to nD0 5 1.0 (the vacuum value). Fig. 3a illustrates
the breakdown of the standard perturbation theory, which fails to converge for
large deviations between the defect and the perfect refraction indexes. On the other
hand, when the expansion coefficients are optimized (in this case, by the QMR
algorithm) the series converges regardless of the value of nD0 as illustrated in Fig.
3b. In Fig. 4 we compare the optimized solutions of the original equation (Eq.
(1.7)) and the preconditioned system (Eq. (2.4)). It is seen that although the iterative
algorithm (QMR) converges for both representations, a significant (in this case two
orders of magnitude) reduction in the number of iterations is obtained when G0 is
applied as a preconditioner. This is translated directly to a significant reduction in
the numerical effort, since the sparse matrix multiplications of G0 require only
twice the effort of applying A directly. We therefore demonstrated that it is the
combination of an efficient sparse preconditioner with optimized expansion coeffi-
cients which makes the approach powerful.

FIG. 4. A log–log plot of the numerical error versus the numerical effort in calculating the wavefunc-
tion in the defect area. The error is defined as the norm of the residual vector, uf 2 Ax u, and the
numerical effort is measured in units of QMR iterations: solid, the original equation (Eq. (3.5)); dashed,
the preconditioned system (Eq. (3.7)). The perturbation is characterized by nP0 2 nD0 5 0.05. The other
computational parameters are the same as in Fig. 3.
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V. CONCLUSIONS

An efficient high-order perturbation expansion for multidimensional inhomoge-
neous Helmholtz/Schrödinger equations with local (diagonal) coupling was pre-
sented. The procedure involves an efficient sparse preconditioner (approximate
Green’s operator) within a Krylov iterative method (QMR). Unlike in perturbation
theory the high-order expansion is not limited to small perturbations and enables
treatments of systems in which the nonseparability is pronounced. The present
procedure is limited, however, to matrix representations of the wave equation in
which the coupling between different degrees of freedom is diagonal. Generaliza-
tions of the separable preconditioner scheme to systems with nondiagonal (but
sparse) coupling, as well as comparisons of the sparse preconditioner to other
standard preconditioners are in progress and are beyond the scope of the pres-
ent work.
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